Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 13571, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37604901

RESUMO

Among evolutionary trends shaping phenotypic diversity over macroevolutionary scales, CREA (CRaniofacial Evolutionary Allometry) describes a tendency, among closely related species, for the smaller-sized of the group to have proportionally shorter rostra and larger braincases. Here, we used a phylogenetically broad cranial dataset, 3D geometric morphometrics, and phylogenetic comparative methods to assess the validity and strength of CREA in extinct and living felids. To test for the influence of biomechanical constraints, we quantified the impact of relative canine height on cranial shape evolution. Our results provided support to CREA at the family level. Yet, whereas felines support the rule, big cats, like Pantherinae and Machairodontinae, conform weakly if not at all with CREA predictions. Our findings suggest that Machairodontinae constitute one of the first well-supported exceptions to this biological rule currently known, probably in response to the biomechanical demands and developmental changes linked with their peculiar rostral adaptations. Our results suggest that the acquisition of extreme features concerning biomechanics, evo-devo constraints, and/or ecology is likely to be associated with peculiar patterns of morphological evolution, determining potential exceptions to common biological rules, for instance, by inducing variations in common patterns of evolutionary integration due to heterochronic changes under ratchet-like evolution.


Assuntos
Aclimatação , Crânio , Gatos , Animais , Cães , Filogenia , Fenômenos Biomecânicos , Ecologia
3.
Evolution ; 75(7): 1738-1752, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33844288

RESUMO

Convergence consists in the independent evolution of similar traits in distantly related species. The mammalian craniomandibular complex constitutes an ideal biological structure to investigate ecomorphological dynamics and the carnivorans, due to their phenotypic variability and ecological flexibility, offer an interesting case study to explore the occurrence of convergent evolution. Here, we applied multiple pattern-based metrics to test the occurrence of convergence in the craniomandibular shape of extant carnivorans. To this aim, we tested for convergence in many dietary groups and analyzed several cases of carnivoran convergence concerning either ecologically equivalent species or ecologically similar species of different body sizes described in the literature. Our results validate the occurrence of convergence in ecologically equivalent species in a few cases (as well as in the case of giant and red pandas), but almost never support the occurrence of convergent evolution in dietary categories of living carnivorans. Therefore, convergent evolution in this clade appears to be a rare phenomenon. This is probably the consequence of a complex interplay of one-to-many, many-to-one, and many-to-many relationships taking place between ecology, biomechanics, and morphology.


Assuntos
Evolução Biológica , Mamíferos , Animais , Tamanho Corporal , Dieta , Filogenia
4.
PLoS One ; 14(12): e0226949, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31881075

RESUMO

Morphological convergence is an intensely studied macroevolutionary phenomenon. It refers to the morphological resemblance between phylogenetically distant taxa. Currently available methods to explore evolutionary convergence either: rely on the analysis of the phenotypic resemblance between sister clades as compared to their ancestor, fit different evolutionary regimes to different parts of the tree to see whether the same regime explains phenotypic evolution in phylogenetically distant clades, or assess deviations from the congruence between phylogenetic and phenotypic distances. We introduce a new test for morphological convergence working directly with non-ultrametric (i.e. paleontological) as well as ultrametric phylogenies and multivariate data. The method (developed as the function search.conv within the R package RRphylo) tests whether unrelated clades are morphologically more similar to each other than expected by their phylogenetic distance. It additionally permits using known phenotypes as the most recent common ancestors of clades, taking full advantage of fossil information. We assessed the power of search.conv and the incidence of false positives by means of simulations, and then applied it to three well-known and long-discussed cases of (purported) morphological convergence: the evolution of grazing adaptation in the mandible of ungulates with high-crowned molars, the evolution of mandibular shape in sabertooth cats, and the evolution of discrete ecomorphs among anoles of Caribbean islands. The search.conv method was found to be powerful, correctly identifying simulated cases of convergent morphological evolution in 95% of the cases. Type I error rate is as low as 4-6%. We found search.conv is some three orders of magnitude faster than a competing method for testing convergence.


Assuntos
Evolução Biológica , Algoritmos , Animais , Gatos/anatomia & histologia , Gatos/genética , Gatos/fisiologia , Fósseis , Lagartos/anatomia & histologia , Lagartos/genética , Lagartos/fisiologia , Mandíbula/anatomia & histologia , Mandíbula/fisiologia , Fenótipo , Filogenia , Índias Ocidentais
5.
Zoology (Jena) ; 129: 25-34, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30170745

RESUMO

The non-venomous grass snake (Natrix helvetica) and the venomous adder (Vipera berus) are two native species that are often found in sympatry in Great Britain and Europe. They occupy partially overlapping ecological niches and prey on small vertebrates, but use different feeding strategies. Here, we investigated the morphologies of grass snakes and adders from Dorset (UK) using two-dimensional geometric morphometrics to assess the degree of sexual dimorphism in size and shape together with the relative impact of allometry and general body dimensions on head shape. Both species showed significant sexual dimorphism in head size, but not in head shape. We found a clear allometric pattern in N. helvetica, whereas allometry in V. berus was generally less pronounced. Body dimensions were strongly correlated with head shape in the grass snake, but not in the adder. The fact that V. berus is venomous appears to explain the lack of allometric patterns and the lack of an association between body dimensions and head shape. The high degree of size dimorphism identified in both species could originate from the advantages of reduced intraspecific competition that are conveyed by a partial differentiation in feeding morphology.


Assuntos
Colubridae/fisiologia , Viperidae/fisiologia , Animais , Tamanho Corporal , Feminino , Cabeça , Masculino , Caracteres Sexuais , Simpatria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...